Preparation of Trifluorophosphaneruthenium(II) Complexes from η^3 : η^3 -Cyclooctadienediylruthenium(IV) Compounds as Precursors

Helmut Werner,*[a] Wolfram Stüer,^[a] Stefan Jung,^[a] Birgit Weberndörfer,^[a] and Justin Wolf^[a]

Dedicated to Professor Gerhard E. Herberich on the occasion of his 65th birthday

Keywords: Allyl complexes / Carbene complexes / Hydrido complexes / P ligands / Ruthenium

The dinuclear cyclooctadienediylruthenium(IV) compound [$\{RuCl_2(\eta^3:\eta^3-C_{10}H_{16})\}_2$] (1) reacts with PCy₃ in 2-propanol under an H₂ atmosphere to give the hydrido(dihydrogen) complex [RuHCl(H₂)(PCy₃)₂] (2) in nearly quantitative yield. Treatment of 1 with PCy₃, PiPr₃ or PiPr₂Ph under argon affords the mononuclear products [RuCl₂($\eta^3:\eta^3-C_{10}H_{16}$)(PR₃)] (3–5) by chloride-bridge cleavage. The corresponding compound 6 with PF₃ as phosphane ligand reacts with PCy₃ by nucleophilic attack of PCy₃ at the carbon atom C3 of the dienediyl chain to give the zwitterionic $\eta^2:\eta^3$ -alkene(allyl)-ruthenium(II) complex [RuCl₂{ $\eta^2:\eta^3-CH_2=C(Me)-CH(PCy_3)-CH(PC$

 $(CH_2)_2CHC(Me)CH_2](PF_3]$ (7) the crystal and molecular structures of which have been determined. The reaction of 7 with excess PCy_3 in the presence of H_2 affords the five-coordinate hydrido compound $[RuHCl(PF_3)(PCy_3)_2]$ (8), which upon treatment with acetylene gives the vinyl derivative $[RuCl(CH=CH_2)(PF_3)(PCy_3)_2]$ (9). The related cationic carbene complex $[RuCl(=CHCH_3)(PF_3)(PCy_3)_2]BF_4$ (10) is obtained by protonation of 9 with HBF_4 in ether.

(© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

Introduction

In the search for coordinatively unsaturated vinylideneruthenium(II) complexes with $[Ru(PiPr_3)_2]$ and $[Ru(PCy_3)_2]$ as building blocks, we recently discovered that the six-coordinate non-octahedral dihydridoruthenium(IV) compounds $[RuH_2Cl_2(PR_3)_2]$ (R = iPr, Cy) are excellent precursors for the preparation of the target molecules [RuCl₂(=C= CHR')(PR₃)₂].^[1] If, however, instead of [RuH₂Cl₂(PR₃)₂] the corresponding hydrido(dihydrogen)ruthenium(II) complexes [RuHCl(H₂)(PR₃)₂] are used as starting materials, the reaction with HC≡CR' in the presence of Brönsted acids and chloride ions leads to the formation of the Grubbs-type ruthenium carbenes [RuCl₂(=CHCH₂R')(PR₃)₂].^[1,2] Since the reactivity of these species depends on the type of phosphane and since, to the best of our knowledge, [3] complexes of the general composition [RuCl₂(=CHCH₂R')-(PR₃)(PX₃)] with two different phosphanes have not been reported in the literature, we were tempted to prepare the respective precursors [RuHCl(H₂)(PR₃)(PX₃)] in order to find out whether they are appropriate starting materials for the synthesis of the desired ruthenium carbenes. While we prepare neutral carbenes CHCH₂R')(PR₃)(PX₃)], we found in the course of these

studies a stepwise synthetic route to ruthenium complexes with [Ru(PF₃)(PCy₃)₂] as a molecular unit. In the present paper we describe details of this route and report on the reactivity of the mixed trifluorophosphane(tricyclohexylphosphane)ruthenium(II) compounds.

Results and Discussion

For the one-pot synthesis of the five-coordinate ruthenium carbenes $[RuCl_2(=CHCH_2R')(PR_3)_2]$ (R = iPr, Cy), recently developed in our laboratory, polymeric cyclooctadieneruthenium(II) dichloride $[\{(\eta^4-C_8H_{12})RuCl_2\}_n]$ was used as the starting material.^[4] By heating a suspension of this compound in 2-butanol for 6 h at 80 °C, in the presence of PCy₃ and H₂, the hydrido(dihydrogen) complex 2^[5] is formed. Since the conditions for the preparation of 2 with $[\{(n^4-C_8H_{12})RuCl_2\}_n]$ as the precursor are rather severe, we decided to search for another starting material to generate 2. The compound of choice was the dinuclear cyclooctadienediylruthenium(IV) complex 1, which was first reported by Porri et al. in 1965^[6] and in subsequent studies used as a catalyst for olefin metathesis.^[7,8] Both Porri^[6a] and others^[9,10] have reported that the chloro bridges of 1 can easily be split by hard and soft Lewis bases to yield the mononuclear compounds $[RuCl_2(\eta^3:\eta^3-C_{10}H_{16})(L)]$ (L = py, DMSO, CH₃CN, CNtBu, CO, PPh₃, P(OMe)₃, PF₃ etc). It was also observed that the reaction of 1 with H₂ (1 bar,

[[]a] Institut für Anorganische Chemie der Universität Würzburg Am Hubland, 97074 Würzburg, Germany E-mail: anor097@rzbox.uni-wuerzburg.de helmut.werner@mail.uni-wuerzburg.de

25 °C) in dichloromethane leads quantitatively to the formation of 2,7-dimethylocta-2,6-diene.^[6a]

Taking these results into consideration, we treated a suspension of 1 in 2-propanol with PCy₃ and replaced the argon atmosphere by dihydrogen. Upon stirring the suspension under these conditions at ca. 50 °C, an orange solid precipitated which was shown by comparison of the ¹H and ³¹P NMR spectroscopic data to be 2.^[5] The isolated yield of 2 was 92%. If the reaction of 1 with PCy₃ was carried out in CH₂Cl₂ at -20 °C under argon (i.e., in the absence of H₂ and a hydrogen-transfer reagent such as 2-propanol), the cyclooctadienedivlruthenium(IV) complex 3 was formed instead of 2 (Scheme 1). Other bulky tertiary phosphanes such as PiPr3 and PiPr2Ph behave analogously and afford the corresponding mononuclear compounds 4 and 5 in 89% and 91% yield, respectively. Compounds 3-5 are yellow to brownish solids that are only moderately air-sensitive but thermally quite labile and decompose both in solution and in the solid state at 40-50 °C. The ¹H NMR spectroscopic data of 3-5 and the ¹³C NMR spectroscopic data of 4 and 5 are similar to those of the Ru(PF₃) complex 6, the crystal and molecular structures of which have been determined crystallographically. [9b] The CH and CH2 protons H1-H5 of 3-5 give rise to five resonances and the carbon atoms C1-C4 to four resonances in the NMR spectra (for assignment see Exp. Sect.), in agreement with the C_2 symmetry of the cyclooctadienediyl ligand. [6b][9b]

Scheme 1

The reactions of **4** and **5** with a slight excess of PCy₃ in the presence of H₂, undertaken with the aim to prepare the mixed-ligand compounds [RuHCl(H₂)(PiPr₂R)(PCy₃)] (R = iPr, Ph), led to a mixture of products that could not be separated by fractional crystallization or chromatographic techniques. When the reactions were monitored by ¹H or ³¹P NMR spectroscopy, the formation of uncoordinated PiPr₃ or PiPr₂Ph was detected. Obviously, PCy₃ replaces the less bulky phosphanes and generates **3**, which upon treatment with PCy₃ and H₂ affords **2**.

In contrast to **4** and **5**, the related PF₃ derivative **6** reacts almost instantaneously with PCy₃, even in the absence of dihydrogen, to yield a single product **7**, the composition of which corresponds to a 1:1 adduct of the two starting materials. The pale-yellow, highly air-sensitive solid is soluble in chloroform and dichloromethane but decomposes in solution at room temperature quite rapidly. Whereas the ¹H and ¹³C NMR spectra (measured at -50 °C in CD₂Cl₂) are rather complicated, the ³¹P NMR spectrum displays a doublet at $\delta = 32.5$ for the PCy₃ and a quadruplet of doublets at $\delta = 137.3$ for the PF₃ phosphorus atoms. The rather small ³¹P-³¹P coupling constant of 19.3 Hz (for comparison see the data for **8–10**) indicate that only one phosphane molecule is coordinated to the metal center while the other is linked to the π -bonded chain-like ligand.

The result of the X-ray crystal structure analysis of 7 is shown in Figure 1. The coordination geometry around ruthenium can best be described as trigonal bipyramidal with the chlorine atoms occupying the apical positions of the bipyramid. The $\eta^2:\eta^3$ -alkene(allyl) unit, formed by nucleophilic addition of PCy₃ at the allylic carbon atom C3 of the η^3 : η^3 -cyclooctadienediyl ligand, occupies two of the equatorial sites, while the third position is occupied by PF₃. In contrast to 6, [9b] the PF₃ molecule of 7 is not disordered. The carbon atoms C1, C2, C7, C8, C10 and the phosphorus atom P1 lie in one plane, the largest deviation being found for C7 with 0.103(2) A. Although 7 possesses two centers of chirality, the crystal contains only that pair of enantiomers in which the methyl group at C2 and the PCy₃ moiety are farthest apart. The bond angle between P1, Ru and the midpoint of the line between C7 and C10 is 122.5(2)° and thus deviates only slightly from the ideal value of 120°. The Ru-P1 bond length of 2.178(2) Å is somewhat shorter than in 6 [2.237(3) A] but almost identical to the Ru-PF₃ distances in the octahedral compound [RuCl₂(PF₃)₂(PPh₃)₂] [2.160(2) and 2.180(2) Å]. [9b] The olefinic fragment of the zwitterionic C₁₀H₁₆(PCy₃) ligand is unsymmetrically linked to the metal center, the bond lengths Ru-C1 and Ru-C2 pointing to a rather weak coordination compared to other alkeneruthenium complexes.[11] Similar Ru-C olefin distances are found in the compound [RuCl₂(η^3 : η^2 : η^3 -C₁₂H₁₈)] which has been prepared from RuCl₃·3H₂O and butadiene.[12]

While we could not convert **7** to the desired hydrido(dihydrogen) complex [RuHCl(H₂)(PF₃)(PCy₃)], treatment of **7** in dichloromethane with excess PCy₃ under a hydrogen atmosphere leads to the formation of the five-coordinate hydridoruthenium(II) compound **8** in 63% isolated yield (Scheme 2). The presence of the hydrido ligand is clearly confirmed by the ¹H NMR spectrum, which displays a signal at high field ($\delta = -24.68$). This signal is split into a doublet of triplets of quadruplets due to the coupling of the RuH proton with the ³¹P and ¹⁹F nuclei of the PCy₃ and PF₃ ligands.

The reactivity of the hydrido(trifluorphosphane)ruthenium(II) complex **8** is similar to that of the corresponding hydrido(carbonyl) derivatives [RuHCl(CO)(PR₃)₂]. By passing a slow stream of acetylene through a solution of **8** in

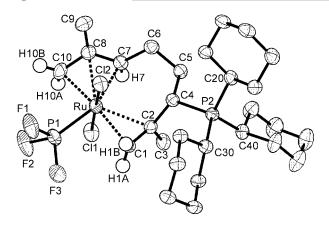


Figure 1. Molecular structure (SCHAKAL plot) of 7; selected bond lengths [A] and angles [°]: Ru-P1 2.178(2), Ru-Cl1 2.427(2), Ru-Cl2 2.433(2), Ru-Cl 2.228(4), Ru-C2 2.360(4), Ru-C7 2.239(4), Ru-C8 2.246(4), Ru-C10 2.204(4), C1-C2 1.393(5), C2-C4 1.523(5), C7-C8 1.427(5), C8-Cl0 1.414(6), P2-C4 1.863(4); Cl1-Ru-Cl2 175.6(3), Cl1-Ru-P1 86.5(1), Cl1-Ru-C1 93.7(1), Cl1-Ru-C2 86.8(1), Cl1-Ru-C8 100.5(1), Cl1-Ru-C10 81.3(1), Cl2-Ru-P1 90.6(1), Cl2-Ru-C1 82.9(1), Cl2-Ru-C2 91.9(1), Cl2-Ru-C7 95.6(1), Cl2-Ru-C8 83.7(1), Cl2-Ru-C10 101.8(1), C1-C2-C3 117.5(3), C1-C2-C4 123.0(3), C2-C4-C5 113.1(3), C2-C4-P2 116.6(2), C5-C4-P2 108.7(2), C7-C8-C9 122.0(3), C7-C8-C10 119.6(3)

Scheme 2

hexane, a rapid change of color from yellow to bright-red occurs and, after removal of the solvent, the vinylruth-enium(II) compound **9** is obtained in nearly quantitative yield. The ³¹P NMR spectrum of **9** displays a doublet for the PCy₃ phosphorus atoms at $\delta = 24.3$ and a quadruplet of triplets for the ³¹P nuclei of coordinated PF₃ at $\delta = 119.2$. Both the ³¹P-³¹P and ³¹P-¹⁹F coupling constants of 45.8 Hz and 1241 Hz, respectively, are of the same order of magnitude as for the hydrido complex **8**. The signals for the three vinyl protons of **9** appear in the ¹H NMR spectrum at $\delta = 8.51$, 5.37 and 5.10 and are all shifted downfield relative to the related ruthenium carbonyl [RuCl(CH=CH₂)(CO)(PCy₃)₂]. [13]

In analogy to the structurally related cationic vinylruth-enium(II) derivative $[Ru(CH=CH_2)(CH_3CN)_2(PCy_3)_2]^+$, which reacts with HBF₄ in ether to generate the dicationic ruthenium carbene $[Ru(=CHCH_3)(CH_3CN)_2(PCy_3)_2]$ - $(BF_4)_2$,^[14] treatment of **9** with HBF₄ in CH_2Cl_2/OEt_2 gives

the monocationic five-coordinate carbene compound 10 in moderate yield. The composition of 10 has been substantiated by elemental analysis and ¹H, ¹³C, ¹⁹F and ³¹P NMR spectroscopy. Typical spectroscopic features of 10 are the signal for the RuCH proton at $\delta = 17.35$ in the ¹H NMR spectrum and the multiplet for the carbene carbon atom at $\delta = 326.1$ in the ¹³C NMR spectrum. Similarly to 9, the ³¹P NMR spectrum of **10** exhibits two resonances at δ = 49.7 and 127.1, the splitting of which again corresponds to a doublet and a quadruplet of triplets. It should be noted that solutions of 10 (e.g., in dichloromethane or nitromethane) are stable only below -20 °C for a few hours; at room temperature decomposition occurs. While we failed to identify any Ru-containing decomposition products, the formation of the vinylphosphonium cation [Cy₃PCH= CH_2 ⁺ [with resonances for the vinyl protons at $\delta = 6.76$ (dd), 6.35 (dd) and 6.15 (ddd) in the ¹H NMR spectrum] could be clearly confirmed.

In summary, the present work illustrates that with the dinuclear η^3 : η^3 -cyclooctadienediylruthenium(IV) compound 1 as the starting material and the unusual zwitterionic $\eta^3:\eta^3$ -alkene(allyl)ruthenium(II) species 7 as an isolated intermediate five-coordinate hydrido-, vinyl- and carbeneruthenium complexes with PF₃ as a supporting ligand can be prepared. In contrast to the neutral ruthenium carbenes [RuCl₂(=CHR)(PCy₃)₂],^[3,15] the cation [RuCl(= CHCH₃)(PF₃)(PCy₃)₂]⁺ is catalytically inactive in the ringopening metathesis polymerization of cyclooctene, probably due to the ease of decomposition to give $[Cy_3PCH=CH_2]^+$. In this respect, the properties of the PF₃ derivative 10 are similar to those of the cationic carbene(carbonyl)ruthenium(II) complexes [RuCl(=CHCH₂R)(CO)(PiPr₃)₂]BF₄ and [RuCl(=CHCH₂R)(CO)(PCy₃)₂]BF₄, the preparation and reactivity of which will be described in a forthcoming publication.

Experimental Section

All operations were carried out under argon using standard Schlenk techniques. The starting materials $\mathbf{1}^{[6b]}$ and $\mathbf{6}^{[9a]}$ were prepared as described in the literature. NMR spectra were recorded at room temperature on Bruker AC 200 and AMX 400 instruments, unless otherwise stated. Abbreviations used: s, singlet; d, doublet; t, triplet; q, quadruplet; m, multiplet; vt, virtual triplet; br, broadened signal; $N = {}^2J(PC) + {}^4J(PC)$. For assignment of protons and carbon atoms for the π -bonded ligands in compounds 3–5 and 7 see Figure 2. Melting and decomposition points were measured by differential thermal analysis (DTA).

Figure 2. Assignment of proton and carbon atoms for the ligands in compounds 3-6 and 7

Preparation of [RuHCl(H_2)(PCy₃)₂] (2) from 1: A suspension of 1 (510 mg, 0.827 mmol) in 2-propanol (40 mL) was treated with PCy₃ (1.86 g, 6.62 mmol) at room temperature. The Schlenk tube was evacuated and the argon atmosphere replaced by H_2 . The suspension was warmed to ca. 50 °C and, after stirring for 40 min, an orange solid precipitated. This solid was separated from the mother liquor, washed twice with 20 mL portions of 2-propanol and dried. It was identified by comparing the ¹H and ³¹P NMR spectra with those of an authentic sample; ^[5] yield 1.07 g (92%).

Preparation of [RuCl₂(η³:η³-C₁₀H₁₆)(PCy₃)] (3): A solution of PCy₃ (95 mg, 0.34 mmol) in CH₂Cl₂ (6 mL) was treated at -20 °C with 1 (104 mg, 0.17 mmol), leading to a change of color from violet to brown-yellow. After stirring the reaction mixture for 5 min, the solvent was evaporated in vacuo. The oily residue was treated with pentane (3 mL) and the suspension irradiated for 1 min in an ultrasound bath. A yellow solid precipitated which was separated from the mother liquor, washed twice with pentane (10 mL) and dried; yield 170 mg (85%); m.p. 46 °C (decomp). ¹H NMR (200 MHz, CD₂Cl₂): δ = 5.14 (m, 2 H, H3), 4.69 (d, ${}^{3}J_{\text{P,H}}$ = 7.6 Hz, 2 H, H1 or H2), 3.55 (d, ${}^{3}J_{\text{P,H}}$ = 3.2 Hz, 2 H, H2 or H1), 3.32 (m, 2 H, H4 or H5), 2.64–2.45 (m, 8 H, H5 or H4 and C₆H₁₁), 2.16 (s, 6 H, Me), 2.20–2.00, 1.83–1.67, 1.40–1.24 (all m, 27 H, C₆H₁₁). ³¹P NMR (81.0 MHz, CD₂Cl₂): δ = 5.0 (s). C₂₈H₄₉Cl₂PRu (588.7): calcd. C 57.13, H 8.39; found C 56.89, H 8.28.

Preparation of $[RuCl_2(\eta^3:\eta^3-C_{10}H_{16})(PiPr_3)]$ (4): A solution of 1 (101 mg, 0.16 mmol) in CH₂Cl₂ (5 mL) was treated with PiPr₃ (68 μL, 0.51 mmol) at room temperature, leading to a change of color from violet to red-brown. After stirring the reaction mixture for 30 min, the solvent was evaporated in vacuo. The oily residue was treated with pentane (5 mL) which after ca. 10 min led to the formation of a brownish solid. The solid was separated from the mother liquor, washed twice with 10 mL portions of pentane and dried; yield 137 mg (89%); m.p. 51 °C (decomp). ¹H NMR $(400 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: $\delta = 5.12 \text{ (m, 2 H, H3)}, 4.81 \text{ (d, }^3J_{P,H} = 7.6 \text{ Hz},$ 2 H, H1 or H2), 3.52 (d, ${}^{3}J_{P,H} = 3.2$ Hz, 2 H, H2 or H1), 3.33 (m, 2 H, H4 or H5), 2.82 (m, 3 H, PCHCH₃) 2.55 (m, 2 H, H5 or H4), 2.17 (s, 6 H, Me), 1.46 (dd, ${}^{3}J_{P,H} = 12.0$, ${}^{3}J_{H,H} = 7.1$ Hz, 9 H, PCHC H_3), 1.39 (dd, ${}^3J_{P,H} = 12.8$, ${}^3J_{H,H} = 7.1$ Hz, 9 H, PCHC H_3). ¹³C NMR (100.6 MHz, CD₂Cl₂): $\delta = 124.9$ (s, C2), 108.6 (d, ${}^{2}J_{P,C} = 9.1 \text{ Hz}, \text{ C3}$), 62.6 (d, ${}^{2}J_{P,C} = 5.8 \text{ Hz}, \text{ C1}$), 36.2 (s, C4), 28.8 (d, ${}^{1}J_{P,C} = 15.8 \text{ Hz}$, $PCHCH_3$), 20.7 (s, Me), 20.1 (d, ${}^{2}J_{P,C} =$ 3.0 Hz, PCHCH₃), 17.8 (br. s, PCHCH₃). ³¹P NMR (162.0 MHz, CD_2Cl_2): $\delta = 17.7$ (s). $C_{19}H_{37}Cl_2PRu$ (468.5): calcd. C 48.72, H 7.96; found C 48.23, H 7.59.

Preparation of $[RuCl_2(\eta^3:\eta^3-C_{10}H_{16})(PiPr_2Ph)]$ (5): This compound was prepared as described for 4, using 1 (523 mg, 0.85 mmol) and PiPr₂Ph (306 mg, 1.80 mmol) as starting materials. Yellow solid; yield 781 mg (91%); m.p. 42 °C (decomp). ¹H NMR(400 MHz, CD_2Cl_2): $\delta = 8.05$ (m, 2 H, Ph), 7.41 (m, 3 H, Ph), 5.14 (m, 2 H, H3), 4.45 (d, ${}^{3}J_{P,H} = 8.8 \text{ Hz}$, 2 H, H1 or H2), 3.46 (d, ${}^{3}J_{P,H} =$ 3.2 Hz, 2 H, H2 or H1), 3.32 (m, 2 H, H4 or H5), 3.08 (m, 3 H, PCHCH₃) 2.57 (m, 2 H, H5 or H4), 2.16 (s, 6 H, Me), 1.40 (dd, ${}^{3}J_{PH} = 14.4, {}^{3}J_{HH} = 7.2 \text{ Hz}, 3 \text{ H, PCHC}H_{3}, 1.32 \text{ (dd, } {}^{3}J_{PH} = 1.00 \text{ Hz}$ 13.2, ${}^{3}J_{H,H} = 7.2 \text{ Hz}$, 3 H, PCHC H_3), 1.22 (dd, ${}^{3}J_{P,H} = 14.0$, ${}^{3}J_{H,H} = 7.0 \text{ Hz}, 3 \text{ H}, \text{ PCHC}H_{3}, 1.17 \text{ (dd, } {}^{3}J_{P,H} = 13.8, {}^{3}J_{H,H} = 1.0 \text{ Hz}$ 7.0 Hz, 3 H, PCHC H_3). ¹³C NMR (100.6 MHz, CD₂Cl₂): $\delta =$ 134.2 (d, $J_{P,C}$ = 6 Hz, Ph), 132.9 (d, $J_{P,C}$ = 29.2 Hz, Ph), 129.6 (d, $J_{P,C} = 2 \text{ Hz}$, Ph), 127.8 (d, $J_{P,C} = 8 \text{ Hz}$, Ph), 126.0 (s, C2), 108.6 (d, ${}^{2}J_{P,C}$ = 9 Hz, C3), 63.8 (d, ${}^{2}J_{P,C}$ = 6 Hz, C1), 36.6 (s, C4), 27.6, 27.2 (both d, ${}^{1}J_{P,C} = 19.5$ and 19.9 Hz, PCHCH₃), 21.0 (s, Me), 19.2, 18.5 (both s, PCHCH₃), 19.1, 18.5 [both d, ${}^{2}J_{P,C} = 2.6$ and 2.7 Hz, PCH*C*H₃]. ³¹P NMR (162.0 MHz, CD₂Cl₂): $\delta = 16.9$ (s). $C_{22}H_{35}Cl_2PRu$ (502.5): calcd. C 52.59, H 7.02; found C 53.14, H 6.91.

Preparation of [RuCl₂{ η^2 : η^3 -CH₂=C(Me)CH(PCy₃)(CH₂)₂CHC-(Me)CH₂}(PF₃)] (7): A solution of 6 (112 mg, 0.34 mmol) in toluene (5 mL) was treated dropwise with a solution of PCy₃ (106 mg, 0.38 mmol) in toluene (5 mL) at room temperature. A slow precipitation of an orange oil was observed. After stirring the reaction mixture vigorously for 10 min, the oil was partly converted into a yellow solid, the precipitation of which was facilitated by addition of pentane (5 mL) and by cooling the Schlenk tube to -78 °C. The solid was filtered, washed twice with 5 mL portions of pentane (-20 °C) and dried; yield 172 mg (83%); m.p. 62 °C (decomp). ^{1}H NMR (200 MHz, CD_2Cl_2 , -50 °C): $\delta = 4.22-4.11$ (m, 2 H, L), 3.54-3.50 (m, 1 H, L), 3.48-3.24 (m, 2 H, L), 2.95 (s, 1 H, L), 2.94-2.72 (m, 1 H, L), 2.60-2.39 (m, 6 H, C_6H_{11}), 2.19, 1.97-1.60, 1.46-1.30 (all m, 36 H, C_6H_{11} and Me of L); L is the abbreviation for the η^2 : η^3 -alkene(allyl) ligand. ¹³C NMR $(100.6 \text{ MHz}, \text{CD}_2\text{Cl}_2, -50 \,^{\circ}\text{C}): \delta = 120.6 \,(\text{s}, \text{C8}), 73.2 \,(\text{s}, \text{C2}), 72.8 \,^{\circ}$ $(dq, {}^{2}J_{P,C} = 43.0, {}^{3}J_{F,C} ca. 3 Hz, C7), 59.8 (d, J_{P,C} = 4.7 Hz, C1 or$ C10), 55.5 (s, C10 or C1), 38.2 (d, $J_{P,C} = 21.0 \text{ Hz}$, C4), 31.5 (d, $^{1}J_{P,C} = 34.3 \text{ Hz}, C_{6}H_{11}$, 31.1, 24.5 (both d, $J_{P,C} = 9.6$ and 11.5 Hz, C5 and C6), 28.5, 21.5 (both s, C3 and C9), 27.1 (br. s, C_6H_{11}), 26.7, 26.5 (both d, $J_{P,C} = 11.4$ and 11.5 Hz, C_6H_{11}), 25.0 (s, C_6H_{11}). ¹⁹F NMR (376.4 MHz, CD₂Cl₂): $\delta = -17.3$ (d, ¹ $J_{P,F} = 1362$ Hz, PF₃). ³¹P NMR (162.0 MHz, CD₂Cl₂): $\delta = 137.3$ (qd, ¹ $J_{P,F} =$ 1362 Hz, $J_{P,P} = 19.3$ Hz, PF₃), 32.5 (d, $J_{P,P} = 19.3$ Hz, PCy₃). C₂₈H₄₉Cl₂F₃P₂Ru (676.6): calcd. C 49.70, H 7.30; found C 50.10,

Preparation of [RuHCl(PF₃)(PCy₃)₂] (8): A solution of 7 (125 mg, 0.19 mmol) in CH₂Cl₂ (4 mL) was treated with PCy₃ (312 mg, 1.11 mmol) and stirred for 2 h under an H₂ atmosphere (1 bar). A change of color from yellow to red occurred. After evaporation of the solvent in vacuo, the residue was suspended in acetone (4 mL) and the mixture stirred for 30 min. An orange-yellow solid precipitated, which was separated from the mother liquor, washed with acetone (4 mL) and dried in vacuo; yield 98 mg (63%); m.p. 40 °C (decomp). ¹H NMR (200 MHz, CD_2Cl_2): $\delta = 2.63-1.21$ (m, 66 H, C_6H_{11}), -24.68 (dtq, ${}^2J_{P^2,H} = 57.8$, ${}^2J_{P^1,H} = 16.9$, ${}^3J_{E,H} = 4.4$ Hz, 1 H, RuH); P¹ and P² assigned to the phosphorus atoms of PCy₃ and PF₃, respectively. ^{19}F NMR (188.3 MHz, CD₂Cl₂): $\delta = -98.1$ (d, ${}^{1}J_{P,F} = 1225 \text{ Hz}$). ${}^{31}P \text{ NMR}$ (81.0 MHz, $CD_{2}Cl_{2}$): $\delta = 128.7$ (qm, ${}^{1}J_{F,P} = 1225 \text{ Hz}$, PF₃), 46.8 (d, ${}^{2}J_{P,P} = 45.8 \text{ Hz}$, PCy₃). C₃₆H₆₇ClF₃P₃Ru (786.4): calcd. C 54.99, H 8.59; found C 54.99, H 8.73.

Preparation of [RuCl(CH=CH₂)(PF₃)(PCy₃)₂] (9): A slow stream of acetylene was passed for 10 s through a solution of 8 (88 mg, 0.11 mmol) in hexane (15 mL) at room temperature. A change of color from yellow to bright red occurred. The solvent was then evaporated in vacuo, and the remaining red solid washed with pentane (3 mL) and dried; yield 90 mg (99%); m.p. 88 °C (decomp). ¹H NMR (200 MHz, C_6D_6): $\delta = 8.51$ (m, 1 H, $CH = CH_2$), 5.37 (m, 1 H, cis-H of CH=C H_2), 5.10 (dm, ${}^3J_{H,H}$ = 13.6 Hz, 1 H, trans-H of CH=C H_2), 2.85-1.11 (m, 66 H, C₆H₁₁). ¹³C NMR (100.6 MHz, C_6D_6): $\delta = 153.9$ (br. s, RuCH), 121.8 (br. s, =CH₂), 36.2 (vt, N = 17.4 Hz, C1 of C₆H₁₁), 30.8, 30.6 (both s, C3,5 of C₆H₁₁), 28.3, 28.1 (both s, C2,6 of C_6H_{11}), 27.0 (s, C4 of C_6H_{11}). ¹⁹F NMR (188.3 MHz, C_6D_6): $\delta = -6.0$ (d, ${}^{1}J_{P,F} = 1241$ Hz). ${}^{31}P$ NMR (81.0 MHz, C_6D_6): $\delta = 119.2$ (qt, ${}^1J_{F,P} = 1241$, ${}^2J_{P,P} = 45.8$ Hz, PF₃), 24.3 (d, ${}^{2}J_{PP} = 45.8 \text{ Hz}$, PCy₃). $C_{38}H_{69}ClF_{3}P_{3}Ru$ (812.4): calcd. C 56.18, H 8.56; found C 56.59, H 8.06.

Preparation of [RuCl(=CHCH₃)(PF₃)(PCy₃)₂]BF₄ (10): A solution of 9 (80 mg, 0.10 mmol) in CH₂Cl₂ (2 mL) was treated with a 1.6 м solution of HBF₄ in ether (0.2 mL, 0.32 mmol) at room temperature. A change of color from red to yellow occurred. The solvent was evaporated in vacuo, the remaining yellow solid was washed twice with 3 mL portions of ether and dried; yield 45 mg (50%); m.p. 108 °C (decomp). ¹H NMR (200 MHz, CD_2Cl_2): $\delta = 17.35$ (br. s, 1 H, Ru=CH), 2.95 (s, 3 H, CH₃), 2.70-1.13 (m, 66 H, C_6H_{11}). ¹³C NMR (50.3 MHz, CD_2Cl_2 , -20 °C): $\delta = 326.1$ (m, Ru=CH), 51.0 (s, CH₃), 35.1 (br. m, C1 of C_6H_{11}). 29.5 (s, C3,5 of C_6H_{11}), 27.2 (m, C2,6 of C_6H_{11}), 25.5 (s, C4 of C_6H_{11}). ¹⁹F NMR (188.3 MHz, CD_2Cl_2): $\delta = -11.6$ (d, ${}^{1}J_{P,F} = 1282$ Hz, PF_3), -153.5 (br. s, BF₄). ³¹P NMR (81.0 MHz, CD₂Cl₂): $\delta = 127.1$ (qt, ${}^{1}J_{\text{F,P}} = 1282, {}^{2}J_{\text{P,P}} = 35.6 \text{ Hz}, \text{PF}_{3}), 49.7 \text{ (d, } {}^{2}J_{\text{P,P}} = 35.6 \text{ Hz}, \text{PCy}_{3}).$ C₃₈H₇₀BClF₇P₃Ru (900.2): calcd. C 50.70, H 7.84; found C 50.25, H 7.31.

Determination of the X-ray Crystal Structure of 7: Single crystals were grown by cooling a saturated solution of 7 in acetone from 25 °C to -20 °C. Crystal data (from 5000 reflections, $2.49^{\circ} < \Theta$ < 28.23°): triclinic; space group $P\bar{1}$ (No. 2); a = 9.878(7), b =13.93(1), $c = 14.17(1) \text{ Å}, \alpha = 87.35(9)^{\circ}, \beta = 84.80(9)^{\circ}, \gamma =$ $K_{\rm g}$) = 0.686 mm⁻¹; crystal size 0.14 × 0.11 × 0.08 mm; IPDS (STOE), Mo- K_{α} radiation (0.71073 Å), graphite monochromator; T = 173(2) K; Θ -scan, max. $2\Theta = 56.46^{\circ}$; 29465 reflections measured, 8456 independent ($R_{\text{int.}} = 0.0535$), 6042 with $I > 2\sigma(I)$. Intensity data were corrected for Lorentz and polarization effects and an empirical absorption correction was applied. The structure was solved by direct methods (SHELX-97).[16] Atomic coordinates and anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least-squares methods using SHELXL-97.^[17] The asymmetric unit of 7 includes two molecules of acetone which were refined anisotropically with restraints. The hydrogen atoms H1a, H1b, H6a, H6b, H7, H10a and H10b were found in a difference-Fourier synthesis and refined with fixed temperature factors $U_{\mathrm{eq.}}$ The positions of all other hydrogen atoms were calculated according to an ideal geometry and refined by the riding method. Conventional R = 0.0455 [for 6042 reflections with $I > 2\sigma(I)$], and weighted $wR_2 = 0.1234$ for all 8456 located reflections; reflection/ parameter ratio 19.90; residual electron density +0.806/-1.074 $e \mathring{A}^{-3}$.

CCDC-175166 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 347), BASF AG, and the Fonds der Chemischen Industrie. We are grateful to the latter in particular for a Ph.D. grant (to W. S.). Moreover, we thank Mrs. R. Schedl and Mr. C. P. Kneis (DTA

and elemental analysis), Mrs. M.-L. Schäfer and Dr. W. Buchner (NMR spectra), and Mr. S. Stellwag for valuable experimental assistance.

- [1] [1a] C. Grünwald, O. Gevert, J. Wolf, P. González-Herrero, H. Werner, Organometallics 1996, 15, 1960–1962. [1b] J. Wolf, W. Stüer, C. Grünwald, O. Gevert, M. Laubender, H. Werner, Eur. J. Inorg. Chem. 1998, 1827–1834.
- [2] W. Stüer, Dissertation, Universität Würzburg, 1999.
- Recent reviews on olefin metathesis with Ru-based catalysts:
 [3a] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18-29.
 [3b] A. Fürstner, Angew. Chem. 2000, 112, 3140-3172; Angew. Chem. Int. Ed. 2000, 39, 3012-3043.
 [3c] R. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413-4450.
- [4] J. Wolf, W. Stüer, C. Grünwald, H. Werner, P. Schwab, M. Schulz, Angew. Chem. 1998, 110, 1165-1167; Angew. Chem. Int. Ed. 1998, 37, 1124-1126.
- [5] Compound 2 was originally prepared from [RuH₂(H₂)₂(PCy₃)₂] and CH₂Cl₂: M. L. Christ, S. Sabo-Etienne, B. Chaudret, *Organometallics* 1994, 13, 3800-3804. For the preparation of [RuH₂(H₂)₂(PCy₃)₂] from [Ru(η³-2-MeC₃H₄)₂](η⁴-C₈H₁₂)] see: S. Busch, W. Leitner, *Chem. Commun.* 1999, 2305-2306.
- [6] [6a] L. Porri, R. Rossi, P. Deversi, G. Allegra, *Tetrahedron Lett.* 1965, 4187–4189. An improved preparative procedure for 1 has been reported: [6b] D. N. Cox, R. Roulet, *Inorg. Chem.* 1990, 29, 1360–1365.
- [7] [7a] L. Porri, R. Rossi, P. Deversi, A. Lucherini, *Makromol. Chem.* **1974**, *175*, 3097–3115. [7b] L. Porri, P. Deversi, A. Lucherini, R. Rossi, *Makromol. Chem.* **1975**, *176*, 3121–3125.
- [8] W. A. Herrmann, W. C. Schattenmann, O. Nuyken, S. C. Glander, Angew. Chem. 1996, 108, 1169-1170; Angew. Chem. Int. Ed. Engl. 1996, 35, 1087-1088.
- [9] [9a] R. A. Head, J. F. Nixon, J. R. Swain, C. M. Woodard, J. Organomet. Chem. 1974, 76, 393-400. [9b] P. B. Hitchcock, J. F. Nixon, J. Sinclair, J. Organomet. Chem. 1975, 86, C34-C36.
- [10] [10a] D. N. Cox, R. Roulet, J. Chem. Soc., Chem. Commun. 1988, 951–953. [10b] D. N. Cox, R. W. H. Small, R. Roulet, J. Chem. Soc., Dalton Trans. 1991, 2013–2018. [10c] S. Wache, W. H. Herrmann, G. Artus, O. Nuyken, D. Wolf, J. Organomet. Chem. 1995, 491, 181–188.
- [11] [11a] M. A. Bennett, T. W. Matheson, G. B. Robertson, A. K. Smith, P. A. Tucker, *Inorg. Chem.* 1981, 20, 2363-2365. [11b] U. Koelle, B.-S. Kang, T. P. Spaniol, U. Englert, *Organometallics* 1992, 11, 249-254. [11c] S. Hüffer, M. Wieser, K. Polborn, K. Sünkel, W. Beck, *Chem. Ber.* 1994, 127, 1369-1377. [11d] M. A. Bennett, A. C. Willis, L. Y. Goh, W. Chen, *Polyhedron* 1996, 15, 3559-3567.
- [12] Preparation: [12a] J. K. Nicholson, B. L. Shaw, J. Chem. Soc.
 (A) 1966, 807-808. Structure analysis: [12b] J. E. Lydon, M. R. Truter, J. Chem. Soc. (A) 1968, 362-375.
- [13] S. Jung, Dissertation, Universität Würzburg, 2001.
- [14] S. Jung, K. Ilg, J. Wolf, H. Werner, Organometallics 2001, 20, 2121–2123.
- [15] [15a] P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem. 1995, 107, 2179-2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041. [15b] P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100-110.
- [16] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467-473.
- [17] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1997.

Received November 30, 3001 [I01492]